The Chevalley-shephard-todd Theorem for Finite Linearly Reductive Group Schemes

نویسنده

  • MATTHEW SATRIANO
چکیده

We generalize the classical Chevalley-Shephard-Todd theorem to the case of finite linearly reductive group schemes. As an application, we prove that every scheme X which is étale locally the quotient of a smooth scheme by a finite linearly reductive group scheme is the coarse space of a smooth tame Artin stack (as defined by Abramovich, Olsson, and Vistoli) whose stacky structure is supported on the singular locus of X.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

N ov 2 00 8 EXTENDING THE COINVARIANT THEOREMS OF CHEVALLEY , SHEPHARD – TODD , MITCHELL , AND SPRINGER

We extend in several directions invariant theory results of Chevalley, Shephard and Todd, Mitchell and Springer. Their results compare the group algebra for a finite reflection group with its coinvariant algebra, and compare a group representation with its module of relative coinvariants. Our extensions apply to arbitrary finite groups in any characteristic.

متن کامل

Shephard-todd-chevalley Theorem for Skew Polynomial Rings

We prove the following generalization of the classical ShephardTodd-Chevalley Theorem. Let G be a finite group of graded algebra automorphisms of a skew polynomial ring A := kpij [x1, · · · , xn]. Then the fixed subring A has finite global dimension if and only if G is generated by quasireflections. In this case the fixed subring A is isomorphic a skew polynomial ring with possibly different pi...

متن کامل

m at h . A C ] 2 4 M ay 2 00 8 EXTENDING THE COINVARIANT THEOREMS OF CHEVALLEY , SHEPHARD – TODD , MITCHELL , AND SPRINGER

We extend in several directions invariant theory results of Chevalley, Shephard and Todd, Mitchell and Springer. Their results compare the group algebra for a finite reflection group with its coinvariant algebra, and compare a group representation with its module of relative coinvariants. Our extensions apply to arbitrary finite groups in any characteristic.

متن کامل

Canonical Artin Stacks over Log Smooth Schemes

We develop a theory of toric Artin stacks extending the theories of toric Deligne-Mumford stacks developed by Borisov-Chen-Smith, Fantechi-Mann-Nironi, and Iwanari. We also generalize the Chevalley-Shephard-Todd theorem to the case of diagonalizable group schemes. These are both applications of our main theorem which shows that a toroidal embedding X is canonically the good moduli space (in the...

متن کامل

K-Theory Of Root Stacks And Its Application To Equivariant K-Theory

We give a definition of a root stack and describe its most basic properties. Then we recall the necessary background (Abhyankar’s lemma, Chevalley-Shephard-Todd theorem, Luna’s étale slice theorem) and prove that under some conditions a quotient stack is a root stack. Then we compute G-theory and K-theory of a root stack. These results are used to formulate the theorem on equivariant algebraic ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2012